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Abstract. The nonlinear complementarity problem can be reformulated as unconstrained minimiza- 
tion problems by introducing merit functions. Under some assumptions, the solution set of the 
nonlinear complementarity problem coincides with the set of local minima of the corresponding 
minimization problem. These results were presented by Mangasarian and Solodov, Yamashita and 
Fukushima, and Geiger and Kanzow. In this note, we generalize some results of Mangasarian and 
Solodov, Yamashita and Fukushima, and Geiger and Kanzow to the case where the considered 
function is only directionally differentiable. Some results are strengthened in the smooth case. For 
example, it is shown that the strong monotonicity condition can be replaced by the P-uniform prop- 
erty for ensuring a stationary point of the reformulated unconstrained minimization problems to be a 
solution of the nonlinear complementarity problem. We also present a descent algorithm for solving 
the nonlinear complementarity problem in the smooth case. Any accumulation point generated by 
this algorithm is proved to be a solution of the nonlinear complementarity under the monotonicity 
condition. 
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1. Introduction 

Let F : Rn -+ Rn be locally Lipschitzian, i.e., for any IL: E Rn, there exist a 
neighborhood N(z) of z and a positive constant L(z) such that for any y, z E N(z) 

IIF - JWII I -wdllY - 417 
where (1 . ]I denotes the Euclidean norm. 

Given a locally Lipschitzian function F, consider the nonsmooth nonlinear 
complementarity problem, denoted by the NCP, which can be defined as 

find x E Rn satisfying xTF(z) = 0, x > 0, F(z) 2 0. (1) 

The nonlinear complementarity problem has been served as a general frame- 
work for linear, quadratical and nonlinear programming, linear complementarity 
problems as well as some equilibrium problems. How to design good algorithms 
for solving the NCP has been an active research area. See [13] for an extensive 
review. 
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When F is smooth, Mangasarian and Solodov [l l] converted the NCP into an 
unconstrained smooth (or continuously differentiable) minimization problem by 
introducing a merit function A& : R” + R defined by 

J&(4 = XT%9 + $-llW(~) + “)+112 - 11412 

+Il(-aa: + wa+l12 - llf+:)l121~ (2) 

where Q > 0 is a real number and (z)+ denotes the vector with components 
max{O, zi}, i = 1,2,. . . , n. 

Kanzow [9] introduced many more so-called NCP-functions to reformulate the 
NCP as unconstrained minimization problems. One of them was further studied 
by Geiger and Kanzow [6]. This function was first introduced by Fischer [3] for 
reformulating nonlinear programming as a system of nonsmooth equations. We 
restate it as follows. 

Let 4 : R2 -+ R be a function defined by 

(b(a, b) = ;(vm? - a - q2. (3) 

The Geiger and Kanzow’s merit function Q : Rn + R can be defined by 

(4) 

For these two merit functions, we state some fine properties taken from [l l] 
and [6] in the following proposition. 

PROPOSITION 1. Suppose F is smooth on 72” and (Y > 1. Let P = M, or Q. 
Then 

(i) P(x) 2 Oforany 2 E En, 

(ii) P is smooth on R”, 

(iii) P(x) = 0 ifand only ifx solves the NCP 

(iv) the set of solutions of the NCP coincides with the set of global minima of P if 
the NCP has a solution. 

The above results show that one may solve the NCP by finding the global minima 
of the following unconstrained smooth minimization problems 

(5) 

or 

(6) 
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It is well known that a local minimum is not generally a global minimum for 
an unconstrained minimization problem. And the problem of finding a global 
minimum is generally difficult because most unconstrained minimization methods 
normally generate a sequence converging to a local minimizer or a stationary point 
rather than a global minimizer. It is therefore crucial to study under what conditions 
a stationary point of unconstrained minimization problems becomes a solution of 
the NCP. Yamashita and Fukushima [ 141 presented a sufficient condition to assure 
that the set of stationary points of (5) does coincide with the set of solutions of the 
NCP. This is stated in the proposition below. 

PROPOSITION 2. Suppose F is smooth on Rr” and a > 1. i’fthe Jacobian VF (x) 
is positive definite for all x E Rn, then any stationary point of AI, is a solution of 
the NCR 

Following the same line, Geiger and Kanzow gave a similar result for the merit 
function Q under a weaker condition. 

PROPOSITION 3. Suppose F is smooth on ‘A?. ZfF is monotone on KY, then any 
stationary point of Q is a solution of the NCR 

Furthermore, instead solving (5) and (6) directly by invoking minimization meth- 
ods, Yamashita and Fukushima [14], and Geiger and Kanzow [6] proposed a descent 
algorithm respectively, which does not require the derivative information of F, and 
Ma or Q, for solving (5) and (6) when F is smooth and strongly monotone on Rn. 

In this note, we generalize Propositions 1, 2 and 3 to the case where F is 
only directionally differentiable in Section 2. When F is smooth, some weaker or 
different conditions are established to assure that any stationary point of the merit 
function is a solution of the NCP It is shown that the P-uniform property of the 
function F is sufficient for a stationary point of the unconstrained minimization 
problems (5) and (6) to be a solution of the NCP. Section 3 is devoted to the 
compactness of the level sets of merit functions, which is crucial in establishing 
the convergence of some minimization algorithms for solving the NCP. We show 
the compactness of the level sets of the two merit functions by weakening not only 
the condition of the smoothness of F but also the strong monotonicity of F. In 
Section 4, we present a descent method by using the descent direction of Q which 
was introduced by Geiger and Kanzow [6], for solving the NCP. This method also 
does not need to calculate the derivatives of F and Q. Under the condition that F 
is monotone, any accumulation point generated by this method is shown to be a 
solution of the NCP. We remark that the strong monotonicity condition is required 
for establishing the convergence of the descent method proposed by Geiger and 
Kanzow [6]. 
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2. The Equivalence Results 

F is said to be directionally differentiable at z if for any d E En, the following 
limit exists 

lim F(x + td) - F(x) 
t-+0+ t 

The limit is denoted by F’(x, d). Furthermore, F is called directionally differen- 
tiable on a set if it is directionally differentiable at any point of the given set. The 
next proposition is a generalization of Proposition 1 for the merit function M,. 

PROPOSITION 4. Suppose F is directionally diflerentiable on Rn. Then for any 
a> 1, 

(i) M,(x) 2 Ofor any x E Rn, 

(ii) M, is directionally differentiable on Rn, 

(iii) Ma(x) = 0 ifand only ifx solves the NCR 

(iv) the set of solutions of the NCP coincides with the set of global minima of M, 
if the NCP has a solution. 

Proof. We only show (ii). The other statements follow a similar argument 
given by Mangasarian and Solodov [l l] and Yamashita and Fukushima [14]. by 
the definition of directional differentiability, for any x, d E Rn, t > 0, 

Ma(x + td) - M,(x) = ((x + td)TF(x + td) - xTF(x)) 

+&[(ll(-aP(x + t4 + (x + td>)+l12 - IIt-aF(x> + x>+l12) 

-(lb + WI2 - l14t2> + (N-4x + W + J’(x +W+l12 
-I(-~x+F(x>>+tt2> - W’(x+td>l12 - llF(x)l12)1~ 

Dividing the above expression by t and taking the limit, by a careful calculation, 
we have 

M;(x, d) = x*F’(x, d) + dTF(x) 

+k [g(x, d) - xTd + h(x, d) - F(xf+‘(x, d)], 

where 

g(x, d) = 2 (-d%(x) + xi)+(-aFi’(x,d) + di), 
i=l 

h(x,d) = 2 (- axi + Fi(x)+(-adi + F;(x, d)). 
i=l 

Cl 

In order to generalize Proposition 2 for the merit function M,, we summarize some 
related results from [ 141. 
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LEMMA 1. Suppose that F is continuous on R” and Q > 0. Then the following 
three statements are equivalent: 

(i) F(x) 1 0,x 2 O,xTF(x) = 0, 

(ii) x = (-c~F(x) + x)+, 

(iii) F(x) = (-ax + F(x))+. 
Define two functions G : Rn -+ Rn and H : Rn + Rn by 

G(x) = (-aF(x) + x)+ - x 

and 

H(x) = (-ax + F(x))+ - F(x). 

LEMMA2.Foranya>0,a:ERnandiE{1,2,...,n},wehave 

(-cxGi(x) + Hi(#(Gi(x) -a&(x)) 2 0, 

hence, 

(-aG(x) + H(x))T(G(x) - aH(x)) 2 0. 

Recall some definitions from [ 121. F : Rn -+ Rn is said to be a uniform P-function 
on a set S if there exists a positive constant X such that for z, y E S 

,ypyJxi - ~iHFi(4 - E(Y)) 2 J+ - ~11~. 
-- 

F is said to be strongly monotone on a set S if there exists a positive constant X 
such that for tc, y E S 

(x - Y)~P%:) - F(Y)) L 41~ - ~11~. 

F is said to be monotone on a set S if X = 0 in the above inequality. It is well 
known that the strong monotonicity is stronger than both the uniform P function 
property and the monotonicity. 

We establish some result related to the function F. 

LEMMA 3. Suppose F is a directionally differentiable on an open set S. Then, for 
anyx E Sandd E I?, 

(i) max diFi(x,d) 1 Xljdjj2, 
l<i<n 

if F is a uniform P-function on S with modulus A, 

(ii) dTF’(x, 4 2 Wl12, 
if F is strongly monotone on S with modulus A, 

(iii) dTF’(x, d) 2 0, 

if F is monotone on S. 
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Proof. It can be verified by the definitions. 
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cl 

We now establish an equivalent result for the merit function A&. 

PROPOSITION 5. Suppose F is directionally differentiable and strongly mono- 
tone on an open set S. If x* E S is a stationary ofM,, i.e., MA(x*, d) 1 0 for any 
d E Rn, then x* is a solution of the NCP for any Q > 1. 

Proof. Since x* is a stationary point of A&, MA(x*, d) 2 0 for any d E Rn. 
Rewrite aMA(x, d) as 

aM,!Jx, d) = ( ax - F(x))~F’(x, d) + dT(aF(x) - x) 

+(G(x) + x)‘+@‘(x, d) + d) 
+(H(x) + J+#+ad + F’(x,d)), 

= (H(x) - crG(x))*F’(x, d) + dT(G(x) - &(x)). 

Let d* = aG(x*) - H(x*). Then Mk(x*, d*) 2 0 gives 

-(aG(x*) - H(x*))~F’(~*, d*) + (G(x*) 
-aH(~*))~(aG(x*) - H(x*)) 2 0, 

i.e., 

(d*)TF’(x*, d*) - (G(x*) - c&f(x*))Td* 5 0. 

This implies that 

(d*)TF’(x*, d*) 5 (G(x*) - crH(x*))Td* 6 0, 

the second inequality is due to Lemma 2. Therefore, the strong monotonicity of F 
on S shows d* = 0 by (ii) of Lemma 3. Consequently, for any d E Rn 

M;(x*, d) = dT(G(x*) - alI( 2 0, 

which shows 

G(x*) - aH(x*) = 0. 

Inviewofd*=aG(x*)-H(z*)=Oandcr>l,wehave 

G(x*) = 0, H(x*) = 0. 

The conclusion follows from Lemma 1. 0 

When F is smooth on S, the above proposition recovers the main result-Theorem 
2.1 in [14]. Importantly, the strong monotonicity of F on S can be weakened. We 
present such a result below. 
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PROPOSITION 6. Suppose F is a differentiable uniform P-function on an open 
set S with modulus A. If x* E S is a stationary of M,, then x* is a solution of the 
NCP for any fy > 1. 

Proof. Since x* is a stationary point of M,, VM,(x*) = 0. Rewrite VM,(x) 
as 

VM,(x) = VF(X)~(H(X) - aG(n;)) + (G(z) - &Y(x)). 

Then, VM&(x*) = 0 gives 

(VF(x*)*(H(x*) - aG(x*)))r + (Gr(z*) - ~Hr(x*)) = 0 

(VF(X*)~(H(X*) - c~G(x*)))~ + (Gr(x*) - a&(x*)) = 0, 

where (VF(X*)~(H(X*) - c~G(x*)))i denotes the i-th element of the column 
vector VF(X*)~(H(Z-*) - cog). Let d* = -aG(x*) + H(x*). Multiplying 
the i-th equation above by df , we obtain 

d,r(VF(~*j%*)~ + (-aGi(x*) + Hi(x*))(Gi(x*) - CL&(X*)) = 0, 
i = 1,2 )...) 72. 

Therefore, Lemma 2 shows that 

max dz(VF(~*)~d*)i 5 0, 
l<i<n 

which implies d* = 0 by the fact that F is a uniform P-function (which implies 
that both VF(x*) and VF(X*)~ are P-matrices) and Lemma 3. Analogous to the 
proof of Proposition 5, one can show that z* is a solution to the NCP. 0 

For the merit function Q, one can establish the same result as Proposition 4. We 
do not give all the detail here. However, if F is directionally differentiable on KY, 
then Q is also directionally differentiable on Rn and for any 2, d E Rn, 

Q’b, 4 = 5 4’(xi, E(x), 4, 
i=l 

where $‘(x:i, Fi(x), d) = 0 if xz + (Fi(r~))~ = 0, otherwise 

&xi, Fib), 4 = V,d+i, E(x))4 + W(xi, E(x))F,!(x, d). 

A similar result to Proposition 5 can be established. This is a generalization of 
Theorem 2.5 in [6]. We first state some preliminary results from [6]. 

LEMMA 4. (i) $(a, b) 2 0, for any a, b E R. 

(ii) +(a, b) = 0 ifand only ifa 1 0, b > 0, ab = 0. 
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(iii) 4 is continuously differentiable for all a, b E R, in particular V4(0,0) = 
(0, WT. 

(iv) V,4(a, b)V&(a, b) 2 0, for any a, b E R. 

(v) ZfVad(a, b)V&(a, b) = 0, then $(a, b) = 0. 

PROPOSITION 7. Suppose F is directionally differentiable and monotone on an 
open set S. If x* E S is a stationary of Q, then x* is a solution of the NCP 

Proof The detail of the proof is omitted. It is analogous to that of Proposition 
5. q 

When F is smooth, one result similar to Proposition 6 is given by Jiang and Qi [S]. 
We state it below. 

PROPOSITION 8. Suppose F is a diflerentiable uniform P-function on an open 
set S. If x* E S is a stationary of Q, then x* is a solution of the NCR 

3. The Convergence Properties 

As was discussed before, it is always important to study the compactness of the 
level set of unconstrained minimization. Define a function N, : R2 + R 

N,(a, b) = ab + & (I(-ab + u>+l12 - llal12 + ll(-au + b>+ll* - llbl12). 
LEMMA 5. Let a > 1. Then, N,(u, b) is unbounded whenever a -+ o;), b -+ co. 

Proof Without loss of generality, consider the following four cases. 
Case 1. a -+ +oo and b + --03. By an algebraic manipulation, for all suffi- 

ciently large a and b, we have 

N&z, b) = +--(a’ - l)b2 -+ +m. 

Case 2. a -+ --oo and b -+ +oo. Using the same argument as Case 1, for all 
sufficiently large a and b, we obtain 

1 
N,&, b) = &a2 - l)u2 + +co. 

Case 3. a -+ +oo and b + +oo. By the definition of N, and the fact that 

x + I4 x+ = max(O,z) = 2, 

we have 

N&z, b) = & ((a2 - l)u2 + (a2 - l)b2 

+(-au + b)( - cm+bl+ (--CYb+a)I -ab+al) 

2 & (2cmb - u2 - b2) 

= 32~ - u/b - b/u). 
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Suppose {N,(a, b)} . b is ounded. Then, by passing to the subsequence, it follows 

2~ - a/b - b/a -+ 0. 

This shows that {a/b} and {b/ a are bounded. By passing to the subsequence } 
again, we may assume 

a/b + al, b/a + ~2. 

Consequently, 

Q1 >o,a2>0, 

a!1 + a!2 = 2cr, 
cYlQ2 = 1, 

We may assume ~1 > Q, and Q:! < a. Hence, when a and b are sufficiently large 
enough, 

a-ab>O,b-cxa<O. 

By the definition of N,, for all sufficiently large enough a and b, we obtain 

Na(a, b) = $f$ b2 -+ +oo. 

It is a contradiction. 
Cuse 4. a + --oo and b -+ --oo. One can prove this case as Case 3. 0 

PROPOSITION 9. Suppose F is continuous on ‘IL Then, the level set L(z”) = 
{$KY(~> 5 J4Y(x0)) is compact if F is a uniform P-function with modulus A. 

Proof. Suppose {x”} C L(x’) and limk,, lJzkII = 00. Define 

J = (1 < i 5 nl{zF} is unbounded}. 

Then J # 0. Let 
i E J, 
i # J. 

Consequently, we have 

xc(x;)2 = XJ(x” - y”l12 
iGJ 

I ,~mx(x” - ~f)(Fi(xl”) - NY’)) 

I $$(xf - $)(Fi(x”) - &(Y”)) 

I ?;a~” lx”IIE@) - %/“)I 

I 
J 

~(xf,‘y~ IFi - WY~)I. 
iEJ 
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This shows 
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Then -v%m is unbounded for some j E J. Choose E E J such that both {$} 
and {am} are unbounded. Then, Lemma 5 shows that {N,($, F~(z”))} is 
unbounded. The nonnegativeness of N, (x!, Fi (z”)) for i = 1,2, . . . n implies that 
{A&(X:“)} is unbounded. It is a contradiction. q 

When F is strongly monotone, the above proposition recovers Theorem 2.3 in 
[14]. For the merit function Q, the compactness of the corresponding level set 
can also be established under the assumption that F is a uniform P-function. The 
following proposition generalizes Theorem 3.2 in [6], where F is assumed strongly 
monotone. 

PROPOSITION 10. Suppose F is continuous on Rn. Then, the level set L(x”) = 
{4&(4 I Qb”>l IS compact if F is a uniform P-function. 

Proof. Suppose {x’“} C L(x”) and limk-+03 ]]z$]] = 00. As in the proof of 
Proposition 9, there exists I E { 1,2,. . . , n} such that both {of} and {Fl(z”)} 
are unbounded. Therefore, { $( $, Fl(z’)} is unbounded by Lemma 3.1 in [6]. It 
follows that {Q(z’)} is unbounded. This is a contradiction. 0 

4. The Convergence of a Descent Direction Method 

Results obtained in the previous sections suggest that we may use any unconstrained 
minimization method for solving the NCP When F is smooth on R”, however, 
Yamashita and Fukushima [ 141, Geiger and Kanzow [6] proposed a descent method 
for minimizing the unconstrained minimization (5) and (6) respectively, which does 
not require to compute the derivatives of F and iV& or Q. Two methods are proved 
convergent to the unique solution of the NCP under the condition that F is strongly 
monotone on Rn. One may attempt to generalize these two methods to the case 
where F is only directionally differentiable. Many methods for solving nonsmooth 
unconstrained minimization have been developed in the last two decades. We refer 
the reader to [7]. Therefore, it is always possible to solve (5) and (6) even when F 
is directionally differentiable on R”. In this section, we present an algorithm for 
solving the NCP when F is smooth and monotone. 

Let 

Geiger and Kanzow [6] used d” as the search direction in their method since d” is a 
descent direction if Z? is not a solution of the NCP. They proved the convergence of 
their method under the condition of strong monotonicity of F. However, the strong 
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monotonicity condition is unfavourable. As we shall see, this condition can be 
replaced by the monotonicity condition of F. To this end, we present the modified 
Geiger and Kanzow’s descent method as follows. 

ALGORITHM 1. 
Step 1. Let x0 E Rn, E > 0, c E (0,l) and p E (0,l). Set k = 0. 
Step 2. If Q(x”) < E, stop. Otherwise, go to Step 3. 
Step 3. Find the smallest nonnegative integer, say rr?, satisfying 

Q(xk + P”“dk) - Q(x’) 5 -a(pmk)*Q(xk). 
Step 4. Let 2 k+1=xk+/?mkdk,k:=k+1andgotoStep2. 

(7) 

REMARK. In Step 3, a change is made for the line search rule. This change is 
crucial for the convergence of Algorithm 1. 

The convergence of Algorithm 1 is presented below. 

PROPOSITION 11. Suppose F is smooth and monotone on Rn. Then, Algorithm 
1 is well-dejined for any initial point x ‘. Furthermore, if x* is an accumulation 
point of the sequence {x’“} generated by Algorithm 1, then x* is a solution of the 
NCR 

Proof. We first prove that Algorithm 1 is well defined. Suppose xk has been 
well defined by Algorithm 1. Then d” is also well defined. Assume that there is no 
nonnegative integer satisfying (7). It follows that for any integer 1 2 0 

Q(x” + ,@d”) - Q(x”) > -a(@)*&(~"). 

Dividing the above inequality by @’ and letting I -+ 00, we have 

Q’(xk, dk) 2 0. 

Since Q is continuously differentiable on Rn, 

V&(x”)%‘” = Q’(x”,d”) 2 0. 

However, Geiger and Kanzow [6] have shown that dk is a descent direction of Q 
at xk if xk is not a solution of the NCP, i.e., VQ(X”)~& < 0. It is a contradiction. 
Thus the well-definedness of Algorithm 1 follows. Furthermore, the objective 
function Q is decreased after each iteration. 

Assume that x* is an accumulation point of {x;“}, say the limit of the sub- 
sequence of {xl”, k E K}. Then {xk, k E K} is bounded, which implies the 
boundedness of {d”, k E K} by the continuous differentiability of 4. Without loss 
of generality, we may assume d” + d* as k(~ K) -+ CO. If {mk, k E K} is 
bounded, then Step 3 of Algorithm 1 gives 

c Qb”) < 0~. 
&K 
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This shows Q(z*) = 0, i.e., z* is a solution of the NCP by (iii) of Proposition 1. 
Assume that {&, k E K} is unbounded. Clearly, 

VQ(x*)%* 5 0. (8) 

On the other hand, we aim at proving VQ(X*)~~* 2 0. We may assume mL(k E 
K) -+ co by passing to the subsequence. It follows from the line search rule of 
Algorithm 1 that for k E K 

Q(z’ + B”‘d”) - Q(x”) 5 -a(~mk)2Q(~k) 

and 

Q(x” + /3mk-1dk) - Q(zk) > -cT(~““~-‘)~&(x”). 

Dividing through the second inequality above by ,Bmk-’ and taking the limit, we 
have 

VQ(z*)%* = Q’(Ic*, d*) 10, 

where the right hand side follows from the boundedness of { Q(x”)}. Consequently, 
by (8) 

OQ(x*)%* = 0. 

Next, we show that z* is a solution of the NCP. In fact, by (iii) of Lemma 4, it 
folIows 

i=l 

Consequently, the monotonicity of F and (iv) of Lemma 4 imply 

Oaq5(L7$, F~(2*))o~gq& F&J*)) = 0, i = 1,2,, . . ,?z. 

It follows from (ii) and (v) of Lemma 4 that z* is a solution to the NCP. cl 

REMARK. Recently, some progress has been made concerning different properties 
of the merit functions !v& and Q. The interested reader is referred to [l, 2,4, lo]. 
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